

2004 Marking Scheme

Grade	Mark Required		% condidatos cohievino onodo
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
A	87+	70%	20.9%
В	71+	57%	23.9%
С	56+	45%	27.5%
D	48+	38%	10.5%
No award	<48	<48%	17.1%

2004 Adv Higher Chemistry Marking Scheme

MC Qu	Correct Answer	% Correct	Reasoning			
1	D	88	EA 4s fills then 3d then 4p EB 3s fills then 3p then 4s then 3d EC 3p fills then 4s then 3d then 4p \overrightarrow{D} D 1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p			
2	С	65	 ☑A Boron has no lone pairs in outer shell as it is group 3 ☑B Nitrogen has a lone pair but it is already donated the pair in NH4⁺ ☑C Phosphorus is in group 5 and has a lone pair of electrons to donate in PH3 ☑D Co³⁺ ions will not be attracted to H⁺ ions as the Co³⁺ ion has a positive charge. 			
3	В	64	 ☑A NaCl has 6:6 co-ordination ☑B CsCl has 8:8 co-ordination ☑C NaCl has 6:6 co-ordination ☑D CsCl has 8:8 co-ordination 			
4	D	83	Aluminium oxide is amphoteric as it acts as both a basic oxide and an acidic oxide			
5	D	74	⊠A NH3 is polar covalent not ionic ⊠B HCl(g) is polar covalent and HCl(aq) cantains the H⁺ hydrogen ion not the H⁻ hydride ion ⊠C H2S is non-polar covalent ☑D CaH2 is ionic and contains the hydride H⁻ ion			
6	В	57	No. of electron pairs = $(no. of outer electrons in central atom + no. of bonds)/2 = (5+3)/2 = 8/2$			
7	~	5/	No. of electron pairs = $(no. of outer electrons in central atom + no. of bonds)/2 = (7+3)/2 = 10/2$			
/	C	20	= 5 pairs of electrons trigonal bipyrimidal electron pair shape			
8	В	47	Ni atom has electron arrangement: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 4s² 3d ⁸ Ni²+ ion has electron arrangement: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁸ (NB: 4s before 3d) 3d ⁸ in Ni²+ has 3 pairs and 2 unpaired electrons			
9	D	54	Zn^{2*} ion has a complete $3d^{10}$ subshell so there is no room for $d \rightarrow d$ transitions and hence no visible wavelength light absorbed for the complementary colour to be viewed by the human even			
10	С	77	1. Balance all atoms other than $O + H$: $ClO_3^- \rightarrow Cl^-$ 2. Balance O by adding H2O to other side: $ClO_3^- \rightarrow Cl^- + 3H_2O$ 3. Balance H by adding H ⁺ to the other side: $ClO_3^- + 6H^+ \rightarrow Cl^- + 3H_2O$ 4. Balance charge by adding e ⁻ to most positive side: $ClO_3^- + 6H^+ + 6e^- \rightarrow Cl^- + 3H_2O$			
11	В	52	n o. of moles of Na ⁺ ions = v × c = 1 litre × 0.2 mol l ⁻¹ = 0.2mol Na ⁺ ions But 2 Na ⁺ ions per Na ₂ CO ₃ formula unit \therefore n o. of moles of Na ₂ CO ₃ = 0.1 mol volume = $\frac{\text{no of moles}}{\text{concentration}} = \frac{0.1}{0.5} = 0.2$ litres = 200cm ³			
12	D	83	 ☑A For this equilibrium, if K=1 then [reactants] = [products] which rarely happens ☑B At equilibrium, concentrations of reactants and products are rarely equal ☑C At equilibrium, both forward and reverse reaction proceed equally ☑D Rate of forward reaction (esterification) = rate of reverse reaction (hydrolysis) 			
13	A	77	Pressure: forward reaction increased pressure :. <i>low pressure</i> favours forward reaction. Temperature: forward reaction is endothermic :. <i>high temperature</i> favours forward reaction			
14	С	74	 Interpretature: Torward reaction is endotriermic night temperature tayours forward reaction. A Adding more cyclohexane does not change the proportion of Iodine in each layer. B Adding more iodine does not alter partition coefficient as iodine splits between layers in the same ratio C Temperature does change partition coefficient Shaking the mixture thoroughly achieves partition faster but still the same coefficient 			

			T
			$\bullet_{x-2} \qquad 2NO_2 \rightarrow N_2 + 2O_2 \Delta G^\circ = -103.6 \text{ kJ mol}^{-1}$
15	R	54	
10			Add $0' + 0$ $2NO_2 \rightarrow N_2O_4$ $\Delta G^\circ = -5.9 \text{kJ mol}^{-1}$
			Image: A reactant Sr(a) must be a solid at standard conditions for enthalpy of formation
16	Р	10	☑B Enthalpy of formation: Forming one mole of a substance from its elements in their natural state
10	В	68	EC This is the enthalpy of lattice formation
			Notice the several of the enthalpy of solution
			ΔH° = +1944kJ mol ⁻¹ \therefore 4x C - F bonds must be broken to be endothermic (4x+486kJ mol ⁻¹)
	~		E A In addition to $4 \times C$ -F bonds being broken, $C(g) \rightarrow C(s)$ and $4F(g) \rightarrow 2F_{2}(g)$ which are both exothermic
1/	В	69	☑B Only 4×C-F bonds being broken in this equation.
			EXAMPLE In addition to 4x C-F bonds being broken, $4F(g) \rightarrow 2F_2(g)$ which is exothermic
			EXID In addition to 4x C-F bonds being broken, $C(g) \rightarrow C(s)$ which is exothermic
18	C	77	Each ionisation energy involves the removal of 1 electron so and $1^{11} + 2^{12} + 3^{12}$ ionisation energies
10	C	//	$\Delta H^{\circ} = 1^{\circ} + 2^{\circ} + 3^{\circ}$ IONISATION ENERGIES FOR CF = $659 + 1600 + 3000 = +3239$ kJ mol ⁻¹ (Current data booklet is Cr = 653, +, 1591, +, 2987 = +5231 kJ mol ⁻¹)
			A Chlorine atoms do not lose electrons to become positive ions, they gain electrons to become negative
10	٨	50	B enthalpy of formation is required to calculate the lattice enthalpy (and vice versa)
19	7	59	EC Gaseous sodium atoms need to become 1+ positive ions
			D Bonds in Cl ₂ need to break before Chlorine atoms can be negative ions.
			EXA Enthalpy of Formation for LiBr: $Li(s) + \frac{1}{2}Br_2(l) \rightarrow Li^*Br^*(s)$
20	С	76	$[\square B Chindipy of solution for LiBr: LiBr(s) \rightarrow Li(aq) + Br(aq)$
			$ \mathbf{x} > 1$ and \mathbf{Rr}^- are already ions so do not need to further ionised
			Image: A Gases have a higher degree of disorder than liquids
21	<u> </u>	11	B Gases have a higher degree of disorder than liquids
21	C	41	☑C Liquid Water is the least disordered as it has hydrogen bonding and polar attractions
			🗷 D Non-polar liquid bromine molecules are more disordered than polar liquid water molecules
			$\Delta G^{\circ} = \Delta H^{\circ} - T \times \Delta S^{\circ}$
22	Α	43	$(\underline{\text{positive } \Delta H^{\circ}}) - T \times (\underline{\text{negative } \Delta S^{\circ}})$
			ΔG° = (positive value) + (positive value) = positive value (thermodynamically not feasible)
			If K is large and positive then equilibrium lies well to the right and ΔG° is negative for forward reaction
22	<u> </u>	C 60	$\mathbf{X} \mathbf{A} \Delta \mathbf{G}^{\circ}$ is positive for reverse reaction
23	C		\square
			Image: Sector and the sector of the secto
			Q x-1 $Ti^{2+} \rightarrow Ti^{3+} + e^- = E^\circ = +0.37V$
			2 $V^{3+} + e^- \rightarrow V^{2+}$ $E^{\circ} = -0.26V$
24	Α	59	Add 0'+2 $Ti^{2+} + V^{3+} \rightarrow Ti^{3+} + V^{2+}$ E° = +0.11V
_			△G° = -nFE° = -1 × 96500 × 0.11 = -10615 J mol ⁻¹ = -10.615kJ mol ⁻¹ = negative
			K > 1 as ΔG° is negative and reaction is feasible and equilibrium lies to right
25	Δ	66	N=2 as 2 moles of electrons are transferred in equation: X + 2Y ⁺ \rightarrow X ²⁺ + 2Y
23		00	$\Delta G^{\circ} = -nFE^{\circ} = -2 \times 96500 \times 1.5 = -289500 \text{J mol}^{-1} = -289.5 \text{kJ mol}^{-1}$
	-		$\square \qquad MnO_4^- + 4H^+ + 2e^- \rightarrow MnO_2 + 2H_2O \qquad E^\circ = 2.26V$
26	В	70	
			Add $0 + 2'$ MnO ₄ ⁻ + 4H ⁺ + 2Fe ²⁺ \rightarrow MnO ₂ + 2H ₂ O + 2Fe ³⁺ <u>E^o = +1.49V</u>
27	D	68	Rate kinetics are decided by the (slow) rate determining step: A + B $ ightarrow$ AB
61	D	00	Order of reactant A = 1 and Order of reactant B = 1 \therefore rate = k [A] ¹ [B] ¹ \therefore rate = k [A][B]

			☑A This reaction is an elimination reaction (C=C formed as HBr is eliminated)
28		63	⊠B Nucleophilic substitution (CN ⁻ on and Br ⁻ off)
	A		\blacksquare C Nucleophilic substitution (C ₂ H ₅ O ⁻ on and Cl ⁻ off)
			⊠D Nucleophilic substitution (OH⁻ on and Br⁻ off)
			🗷 A Addition if HI across C=C double bond
20	D	45	☑B Light require to homolytically split Br₂ into free radicals and free radical chain reaction begins
27	В	00	■C Nucleophilic substitution (OH ⁻ on and Br ⁻ off)
			Electrophilic substitution (nitration of benzene)
			🗷 A Addition if HI across C=C double bond
30	Ν	66	EB Light require to homolytically split Br2 into free radicals and free radical chain reaction begins
50	U	00	I≥IC Nucleophilic substitution (OH ⁻ on and Br ⁻ off)
			MD Electrophilic substitution (nitration of benzene)
			MANH ₃ has lone pair of electrons which seeks out centres of positive charge
31	Α	51	B NH4 is not a nucleophile as it has no negative charge or lone pair of electrons
•-	•••	-	E CBr2 has pure covalent bonding and cannot act as a nucleophile
			A CH CH (CH)CH (CH)CH CH - 1 Bond and the o+ charge on the C atom attracts nucleophiles
			$\square A CH_3CH(CH_3)CH(OH)CH_2CH_3 \rightarrow 2 \text{-methylpentan-3-ol}$
32	Α	94	$ = 5 CH_3CH(CH_3)CH(CH_3)CH_2CH_3 \rightarrow 5 - methylpethan-2-ol (inconnect as it has 5 carbons) $
			$\mathbf{E} \subset \mathbf{C} = $
			\blacksquare A Primary Alcohol \rightarrow would react with acidified dichromate solution
~~	~		$\mathbf{\overline{R}}$ B Secondary Alcohol \rightarrow would react with acidified dichromate solution
33	С	65	✓C Dehydrates to 2-methylpropene which would react with Br₂ to form 1 2-dibromo-2-methylpropene
			⊠D 5 carbons on structure D and 1.2-dibromo-2-methylpropane has 4 carbons
			A The derivative must be stable and not decompose at its melting point
24		11	B Too low a relative molecular mass would mean the derivative is not a solid at room temp.
34	D	04	🗷 C Melting points are used to identify the derivative.
			$\square D$ A sharp melting point is required to identify the derivative by melting point.
			oxtimesA Both substances are alcohols $ o$ Only aldehydes and ketones make derivatives
35	Ν	43	\blacksquare B Both substances are carboxylic acids \rightarrow Only aldehydes and ketones make derivatives
55	υ	чJ	$oxed{\mathbb{Z}}$ C Both substances are ethers $ ightarrow$ Only aldehydes and ketones make derivatives
			\square D ethanal and propanal are aldehydes \rightarrow Only aldehydes and ketones make derivatives
		33	Ester compound would hydrolyse with NaOH to form:
36	Α		a) diol: HO-CH2CH2-OH
			b) 2xCH2COOH but CH3COOH would be neutralised by NaOH to form CH3COO ⁻ Na ⁺
		80	\mathbb{E} A CH ₃ COCH ₃ is an alkanone which have a neutral pH
37	Ν		EB CH ₃ CH ₂ CN is a nitrile compound with a high pKa value which means little acid/base activity
57	U		C CH ₃ CH ₂ CHO is an alkanal which have a neutral pH
			\square CH ₃ CH ₂ NH ₂ is an amine which have an alkaline pH
			MA Benzene group is planar and the single Chloro group lies in the same plane as benzene ring
38	Α	42	B Methyl group on methylbenzene in non-planar as three H in -CH3 lie outside plane of ring
			E Cyclonexane is non-planar as the carbons have a tetrahedral 3D shape
			Image: Short processory The car bons have a terr anear ar 50 shape Image: Short processory The car bons have a terr anear ar 50 shape
~ ~	~		X R Emission Spectroscopy: Measuring the wavelengths produced when excited electrons drop down energy levels
39	C	65	∠C Infra-red Spectroscopy: Adsorption of TR wavelengths as energy is absorbed as arouns within molecules vibrate
			ED Mass Spectroscopy: Separating charged particles through a magnetic field
			🗷 A Butan-1-ol and butan-2-ol are drawn and are different structures.
10		64	B trans-1,2-dibromoethene and cis-1,2-dibromoethene are drawn and are different 3D structures
40	υ		🗷 C 2-methylbutane and 2,2-dimethylpropane are drawn and are different structures.
			☑D both structures are 1,1,2-trichloroethane and are the same structure.

20	2004 Adv Higher Chemistry Marking Scheme				
Long Qu	Answer	Reasoning			
1 a(i)	Atoms get smaller or increasing nuclear charge on outer electrons	Across a period, the atoms get smaller due to the same outer shell being pulled in by the increasing nuclear charge. The outer electrons are harder to remove so the ionisation energy increases.			
1 a(ii)	N is higher as it already has half-filled 2p orbital or O is lower as removing an electron creates a half filled 2p-orbital	Nitrogen is 1s ² 2s ² 2p ³ . Half filled p-orbitals are relatively stable and require more energy to remove an electron. Oxygen is 1s ² 2s ² 2p ⁴ . Removing one electron creates 2p ³ on oxygen.			
1b	Removing an electron from Li ⁺ breaks into a full electron shell	2 nd Ionisation energy of Li: $\text{Li}^+(g) \rightarrow \text{Li}^{2^+(g)} + e^{-2}$ Removing an electron from Li ⁺ breaks a stable, complete outer shell of electrons which requires more energy.			
2a	-286 kJ mol ⁻¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
2b	Bond enthalpies used are mean bond enthalpies and not measure directly	The bond enthalpies for $C=C$, C-H and C-C are averages and not the measured values from the experimental route described.			
За	+129	$\Delta H^{\circ} = \sum \Delta H^{\circ}(\text{products}) - \sum \Delta H^{\circ}(\text{reactants})$ = (-1131) + (-394) + (-242) - (2x-948) = -1767 - (-1896) = +129 kJ mol ⁻¹			
3b	385.1K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$ $\therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{129 \times 1000 \text{ J mol}^{-1}}{335 \text{ J K}^{-1} \text{ mol}^{-1}} = 385.1 \text{K}$			
3с	378-380K	When reaction becomes feasible, the product gases CO_2 and steam are produced. From the graph, gases are produced at 378-380K.			
3d	Any answer from:	Oil bath heated too quicklyS° valid at 25°C rather than room temperatureOil bath not stirredNot carried out at standard conditionsImpure/wet sampleGas leaksUnequal distribution of temperature in the powderSticky gas syringe			
4a	2-phenylpropane has more van der Waals attractions	More atoms in 2-phenylpropane than benzene so stronger van der Waals intermolecular attractions between 2-phenylpropane molecules.			
4b	Benzoic acid contains hydrogen bonding	The -OH bond in the carboxyl group gives benzoic acid hydrogen bonding to raise the boiling point of benzoic acid.			
4c	Any 2-halopropane	2-fluoropropane, 2-chloropropane, 2-bromopropane or 2-iodopropane			
5α	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁷ or [Ne] 3s²3p ⁶ 3d ⁷	Electron arrangement of Co atom: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² 4s electrons are removed before 3d electrons on ionisation to Co ²⁺ ion Electron arrangement of Co ²⁺ ion: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² NB [Ar]3d ⁷ is not acceptable answer as there are no s or p orbitals in answer.			
5b	Hexaamminecobalt(II) or hexamminecobalt(II)	NH_3 ligands are called ammine not amine or amino Complex has overall positive charge so complex name does not end in -ate Co ²⁺ ion has oxidation number =2 so (II) after cobalt in name			
5с	Oxidising agent for oxidation of $\text{Co}^{2*} \rightarrow \text{Co}^{3*}$	$\begin{array}{c c} K_4[Co(CN)_6] & K_3[Co(CN)_6] \\ 4\times K^* \therefore \text{ complex must be } [Co(CN)_6]^{4-} \\ 6\times CN^- \therefore Co \text{ ion must be } Co^{2+} \text{ ion as } -6+2=-4 \\ \hline Oxidation \text{ Step: } Co^{2+} \rightarrow Co^{3+} + e^- \\ \hline Reduction \text{ Step: } Cl_2 + 2e^- \rightarrow 2Cl^- \\ \hline \end{array}$			

5d	d→d splitting different due to different ligand field strength	The degree of splitting of the d-orbitals is dependent on the field strength of the ligand available
5e	217.7	$E = \frac{Lhc}{\lambda} = \frac{6.02 \times 10^{23} mol^{-1} \times 6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^8 ms^{-1}}{550 \times 10^{-9} m} = 217705 \mathrm{Jmol}^{-1}$ $= 217.7 \mathrm{kJ mol}^{-1}$
6a	MnO4 ⁻ + 8H ⁺ + 5Fe ²⁺ ↓ Mn ²⁺ + 4H ₂ O + 5Fe ³⁺	$\begin{array}{cccc} \bullet & MnO_{4^{-}} + 8H^{*} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \\ \bullet & x5 & 5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-} \\ Add \bullet + \bullet' & MnO_{4^{-}} + 8H^{*} + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_{2}O + 5Fe^{3+} \end{array}$
6b(i)	1.204×10 ⁻⁵ mol	no. of mol Fe ²⁺ = volume x concentration = 0.0301 x 0.0020 = 6.02x10 ⁻⁵ mol MnO ₄ ⁻ + 8H ⁺ + 5Fe ²⁺ → Mn ²⁺ + 4H ₂ O + 5Fe ³⁺ ^{1mol} 5 mol 1.204x10 ⁻⁵ mol 6.02x10 ⁻⁵ mol no. of mol MnO ₄ ⁻ ions in 25cm ³ = 1.204x10 ⁻⁵ mol
6b(ii)	0.24%	no. of mol MnO4 ⁻ ions in 100cm ³ = 4.816×10 ⁻⁵ mol mass = no. of mol × gfm = 4.816×10 ⁻⁵ mol × 54.9 = 2.64×10 ⁻³ g %Mn = $\frac{\text{mass of Mn}}{\text{mass of sample}}$ = $\frac{2.64 \times 10^{-3}g}{1.11g}$ ×100 = 0.24%
6c	Colorimetry	The purple colour of MnO_4^- is proportional to the concentration of the MnO_4^- ion.
7a	+ 0 and 0- + 0 0	× × × × × × × × × × × × × × × × × × ×
7b(i)	O_3 + $O \rightarrow 2O_2$	$ \begin{array}{cccc} \bullet & NO + O_3 \to NO_2 + O_2 \\ \bullet & NO_2 + O \to NO_2 + O_2 \\ & Add \bullet \bullet & O_3 + O \to 2O_2 \end{array} $
7b(ii)	Catalyst	Speeds up reaction but is not used in the reaction
7c(i)	2 nd order	ExperimentsChange in conditionsEffect on RateOrder1+2 $[O] \times 2$ $\times 2$ 12+3 $[NO_2] \times 2$ $\times 2$ 1Rate = k $[O]^1 [NO_2]^1$ = k $[O][NO_2]$ \therefore Overall order = 1 + 1 = 2
7c(ii)	5.97x10 ⁹ l mol ⁻¹ s ⁻¹	Rate = k [O][NO ₂] k= $\frac{\text{rate}}{[O][NO_2]}$ = $\frac{6.10 \times 10^{-17} \text{ mol } l^{-1} \text{s}^{-1}}{(9.20 \times 10^{-15} \text{ mol } l^{-1}) \times (1.11 \times 10^{-12} \text{ mol } l^{-1})}$ = 5.97×10 ⁹ l mol ⁻¹ s ⁻¹
8a	pH remains same	Buffers are able to maintain a certain pH and resist changes in pH with the addition of acid or alkali.
8b	4.47	$1 \text{ mol of } C_{2}H_{5}COOK = (3\times12)+(5\times1)+(2\times16)+(1\times39.1)=36+5+32+39.1=112.1g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{2.24g}{112.1 \text{ g mol}^{-1}} = 0.020 \text{ mol}$ concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.020 \text{ mol}}{0.25 \text{ mol} \text{ l}^{-1}} = 0.080 \text{mol} \text{ l}^{-1}$ pH = pK _a - log $\frac{[\text{acid}]}{[\text{salt}]} = 4.87 - \log \frac{0.20}{0.080} = 4.87 - \log(2.5)$ = 4.87 - (-0.398) = 4.47

9 a(i)	Al ₂ O ₃ or conc H ₂ SO ₄ or phosphoric acid	CH3CH(OH)CH3 dehydration CH3CH=CH2 + H2O propan-2-ol propene	
9a(ii)	Hydrogen cyanide HCN	CH3COCH3 + HCN propanone CH3C(CH3)(OH)C≡N cyanohydrin compound	
9b	ОН СН3-С-С СН3 ОН	CH3C(CH3)(OH)C≡N <u>hydrolysis</u> CH3C(CH3)(OH)COOF cyanohydrin compound hydroxycarboxylic acid	4
9c	reduction	Oxidation: propan-2-ol \rightarrow propanone \therefore Reduction: propanone \rightarrow propan-2-ol	
10a	Ethers	Ethers contain the group C-O-C and are also known as alkoxyalka	anes
10b	Add sodium metal	Add a group 1 metal to methanol: 2CH ₃ OH + 2Na \rightarrow H ₂ + 2Na ⁺ CH	₃ O ⁻
10c(i)	<u>Step 1</u> Heterolytic fission of C-Cl bond to form carbocation <u>Step 2</u> Nucelophilic attack of methoxide ion	$CH_{3} - C - CI \xrightarrow{\text{Step 1}} CH_{3} - C+ CI \xrightarrow{\text{carbocation}} CH_{3}$ $CH_{3} - C+ CI \xrightarrow{\text{Step 1}} CH_{3} - C+ CI \xrightarrow{\text{chloro-2-methylpropane}} CH_{3}$ $CH_{3} - C+ \xrightarrow{\text{chloro-2-methylpropane}} CH_{3} \text{chlo$	3
10c(ii)	Too many bulky methyl groups around C-Cl bond which provide steric hindrance	S_N2 reactions occur when a nucleophile attacks the δ + of the polar carbon-halogen bond. In tertiary halogenalkanes, the bulky alkyl groups reduce the likelihood of a successful collision by the nucleophile. This makes the S_N1 reaction more likely via heterolytic fission of the C-X bond forming a carbocation intermediate	
10d	Any one from:	$\begin{array}{c c} & C_{3}H_{7} & C_{2}H_{5} \\ HO^{11} & C & CH_{3} \\ H & pentan-2-ol & HOCH_{2}^{11} & C & CH_{2}^{11} \\ H & entan-2-ol & H & enthylbutan-2-ol & CH_{3} \\ HO^{11} & C & CH_{3} \\ H & enthylbutan-2-ol & CH_{3} \\ H & enthylbutan-2-ol & H & enthylbutan-2-ol & CH_{3} \\ H & enthylbutan-2-ol & H & enthylbutan-2-ol & CH_{3} \\ H & enthylbutan-2-ol & H & enthylbutan-2-ol & H \\ \end{array}$	1 3 1-ol 3

11a	Agonists produce the same response as the body's natural active compound	Agonists bind with the active site and produces a biological response in the cell. Antagonists bind with the active site and do not produce a biological response in the cell.			
11b	Structure showing:	OH CH CH CH2 NH			
11c	Secondary amine	Primary Amine: 1 carbon attached to the N in the amine Secondary Amine: 2 carbons attached to the N in the amine Tertiary Amine: 3 carbons attached to the N in the amine			
12a(i)	Carbonyl group or C=O bond	C=O causes a strong absorption at 1745cm ⁻¹			
12a(ii)	ester	C=O in an ester bond causes a strong absorption at 1745cm ⁻¹			
12b(i)	0.058g	Mass of carbon = $0.478g \times \frac{12}{44} = 0.130g$ Mass of hydrogen = $0.196g \times \frac{2}{18} = 0.022g$ Mass of oxygen = original mass - mass of hydrogen - mass of carbon = $0.210g - 0.130g - 0.022g$ = $0.058a$			
12b(ii)	C₃H6O	ElementsCHOMass of element0.1300.0220.058Divide mass by RAM= $\frac{0.130}{12}$ = $\frac{0.022}{1}$ = $\frac{0.058}{16}$ Divide mass by RAM= $\frac{0.01083}{12}$ = 0.0218 = 0.0036 Divide through by smallest value= $\frac{0.01083}{0.0036}$ = $\frac{0.0218}{0.0036}$ = $\frac{0.0036}{0.0036}$ Round To Whole Number361			
12c(i)	116g (accept 115-117g)	Compound is furthest peak to right (the heaviest peak)			
12c(ii)	C ₆ H ₁₂ O ₂	Mass of C ₃ H ₆ O = (3x12)+(6x1)+(1x16) = 36+6+16 = 58g Heaviest peak (furthest to right) = 116g ∴ 116g = 2x 58g = 2x (C ₃ H ₆ O) ∴ molecular formula is C ₆ H ₁₂ O ₂			
12d	Ethylbutanoate	As compound is an 6 carbon ester and the alcohol in the ester is 2 carbon ethanol, the carboxylic acid in the ester must have 4 carbons carboxylic acid is butanoic acid			